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Theoretical continuum models that describe the formation of patterns on surfaces of targets undergoing
ion-beam sputtering are based on Sigmund’s formula, which describes the spatial distribution of the energy
deposited by the ion. For small angles of incidence and amorphous or polycrystalline materials, this description
seems to be suitable, and leads to the classic Bradley and HarpersBHd morphological theoryfR. M. Bradley
and J. M. E. Harper, J. Vac. Sci. Technol. A6, 2390s1988dg. Here we study the sputtering of Cu crystals by
means of numerical simulations under the binary-collision approximation. We observe significant deviations
from Sigmund’s energy distribution. In particular, the distribution that best fits our simulations has a minimum
near the position where the ion penetrates the surface, and the decay of energy deposition with distance to ion
trajectory is exponential rather than Gaussian. We provide a modified continuum theory which takes these
effects into account and explores the implications of the modified energy distribution for the surface morphol-
ogy. In marked contrast with BH’s theory, the dependence of the sputtering yield with the angle of incidence
is nonmonotonous, with a maximum for nongrazing incidence angles.
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I. INTRODUCTION

Ion bombardment of solids often gives rise to character-
istic surface topographies, which evolve under stationary and
homogeneous ion fluxes. Besides kinetic roughening, wave-
like ripple structures may occur. Such height modulations on
the submicron scale have been observed for crystalline
semiconductors1,2 as well as for crystalline metals3,4 and
some amorphous5 and polycrystalline materials, see a recent
review in Ref. 6. According to continuum theories, which are
based on the work of Bradley and HarpersBHd,7 the periodic
patterns emerge from a competition between a roughening
curvature instability due to characteristics of the spreading of
ion energy, and simultaneous smoothing processes due to
surface diffusion.8,9 Although this mechanism seems to be
quite universal, there are material-specific differences in the
evolution of surface topographies. For nonmetallic sub-
strates, for example, one usually needs off-normal incidence
of ion flux to produce ripples, which change their orientation
with the incidence angle,2,4,5,10–14 whereas ripples are ob-
served on metallic substrates even at normal incidence, and
the orientation of ripples changes with substrate
temperature.3,15,16Furthermore, the smoothing mechanism of
surface diffusion is not well understood yet. In previous
simulations,17 we have found that the emerging patterns de-
pend crucially on the diffusion mechanisms applied. In par-
ticular the long-time behavior, which is governed in the con-
tinuum theory by nonlinear terms, depends even qualitatively
on the surface diffusion mechanism. Given that the surface
topographies resulting from different mechanisms of surface
diffusion have been studied by simulations elsewhere,18 in
the present work we will focus on specificities due to the
energy deposition process.

Continuum theories for the surface morphology of the tar-
get usually assume that the kinetic energy of an ion hitting a

solid surface spreads in the bulk and produces a Gaussian
density of deposited energy

essr d = Nsee−fsx2+y2d/2b2ge−fsz + ād2/2a2g,

Ns = fs2pd3/2ab2g−1, s1d

wherer =sx,y,zd is a point within the target, ions are falling
along theẑ axis and penetrate an average distanceā within
the solid,e is the average kinetic energy carried by each ion,
and the values ofa, b describing the spreading of the energy
are of the same order of magnitude asā. The Gaussian form
s1d is based on the work of Sigmund,19 who considered a
polycrystalline or amorphous target and analyzed the kinetic
transport theory of the sputtering process. He found that in
the elastic collision regime at energies where electronic stop-
ping is not dominating, the deposited energy can be approxi-
mated by a Gaussian near its maximum. The quality of the
approximation is reasonable, if mass differences between
substrate and ion are not too large. Obviously, the Gaussian
form is not universal and consequences of deviations from
the Gaussian form within the BH model have not been stud-
ied yet. In particular, although the observations of ripples on
single crystalline metals3,15,16,20 are qualitatively described
by the BH model, the latter is strictly a theory for amorphous
materials, and thus there is a need to justify theoretically the
emergence of such type of patterns onto this other class of
substrates.

Obtaining more detailed information about the deposited
energy from simulations has become straightforward by now,
as there are many well calibrated, efficient simulation meth-
ods for ion impact available.21–25 In the present work, we
use simulations based on the binary-collision approx-
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imation23,25,26 and consider a metallic materialsCud, for
which we generate statistical ensembles of collision cascades
emerging from single-ion impact events on flat surfaces. In
previous work on the simulation of sputtering in metals, al-
ready some deviations27–30from Sigmund’s theory have been
found. In particular they are due to the directional anisotropy
of the collision cascades, which follow closed packed planes
of atomsscalled “focusing”d.31 Anyway, in those references
the analysis of the data was performed as a function of depth
but not as a function of the lateral distance. Also the angular
distributions of the ejected atoms has been evaluated,32–34

again without an analysis as a function of the lateral distance.
In one work,35 full ejection patterns of atoms were actually
studied sat zero temperatured, but no quantitative analysis
was performed apart from measuring the sputter yield. To
compare with Eq.s1d, we analyze here our data also in terms
of the lateral distribution of the deposited energies and
ejected particles. We do not claim to perform the best state of
the art simulation of ion impact on Cusfor example, we only
consider a very crude model of surface binding forcesd.
Rather, we aim at more generic results, which are of rel-
evance to the theory of surface evolution. Our simulations
provide an average density of deposited energy, which is
quite different from the Gaussian form in Eq.s1d. We fur-
thermore consider the fluctuations around this average and
find strong, intrinsic noise. In the subsequent part of our
work we investigate the consequences of the simulation re-
sults for the continuum theory of pattern formation by ion-
beam sputtering. We obtain that the modified energy distri-
bution obtained in the numerical simulations induces a
sputtering yield that overcomes some of the shortcomings
swhen comparing with experimentsd of the analogous result
within BH’s theory. Moreover, we recover the production of
the ripple instability, and the dependence of the pattern fea-
tures with phenomenological parameters similar to BH
theory, thus providing a theoretical framework within which
observations of ripples on metals can be naturally
accomodated.3,15,16,20

II. OBSERVABLES OF CASCADE STATISTICS

In this section we want to relate observables of our simu-
lations to the phase space density

gsv,r,z,tur0,z= 0,v0,t = 0d, s2d

wherer;sx,yd. This function is the basic quantity underly-
ing the kinetic theory of collision cascades, and also intro-
duces the quantities which are used in the construction of a
continuum theory of surface pattern formation by ion bom-
bardment. Functiong is the average density of cascade par-
ticles in six-dimensionalsv ,r ,zd space at timet, under the
assumption that one ion has hit the surface atr0 and at t
=0 with velocity v0. As we will only treat identical initial
conditions withr0=0 andv0=−uÎ2e0/muez, we will use the
abbreviated notationgsr ,z,v ,td and drop the explicit depen-
dence onr0 and v0. The average has to be taken over an
ensemble of targets, which differ by random, thermal dis-
placements of atoms.

To define our simulation observables in terms of the phase
space density, first note thatgsr ,z,v ,tdsv ·dad d3v dt is the
number of particles, which penetrate a surface elementda
situated at positionsr ,zd, with velocity v during the time
interval dt. The phase space density and the corresponding
current density may as well be considered as functions of
position, energy and direction of velocity usingv=Î2e /mv̂,
v̂ being the unit vector in the direction ofv, so thatvd3v
=s2/m2dev̂ de dv̂. The current densityj se ,r ,z,tdde of cas-
cade particles of energy neare is given by

j se,r,z,tdde =
2

m2deE dv̂ ev̂gse,v̂,r,z,td. s3d

From Eq.s3d, it is obvious that the time integral

h2dse,r,zddx dy=E
0

`

dtez · j se,r,z,tddx dy s4d

equals the total average number of particles per energy at
energye of a single collision cascade, which penetrate the
surface elementdx dyez located atsr ,zd. Note thath2d is a
surface density and the quantities

n2dsr,zd =E
0

`

de h2dse,r,zd s5d

and

e2dsr,zd =E
0

`

de eh2dse,r,zd s6d

give, respectively, the average number of particles and aver-
age energy per surface area transported to thesxyd plane atz
by the collision cascade.

The particles arriving at thez=0 planeswhich constitutes
the surface of the materiald with velocities in outward direc-
tion will leave the bulk if they overcome the surface binding
forces. We will use a simple spherical barrier model of sur-
face binding with barrier heightU. This implies that all par-
ticles arriving at the surface with kinetic energye.U will be
sputtered off. The surface densitynU of these particles is
therefore given by Eq.s5d with the lower boundary of thee
integration replaced byU. The total sputtering yield is the
surface integral of this density,YU=ed2r nUsrd. At internal
surfaces there is no surface binding and thus

pse,r,zd = h2dse,r,zd/YU=0 s7d

becomes the probability density to find a particle with energy
e crossing the internal surface at locationsr ,zd, and pUsrd
=nUsrd /YU is the probability density to find a particle leav-
ing the bulk atr. These are the quantities we will study in
the subsequently described simulations.

III. BINARY-COLLISION APPROXIMATION
SIMULATIONS

Atomic displacements and particle ejection from a solid
due to the impact of a single ion with kinetic energy in the
keV range can be simulated by using the binary-collision
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approximation25 sBCAd. The basic idea is to substitute the
detailed particle trajectories by trajectories where the par-
ticles travel with constant velocity until they “hit” onto an-
other particle. Each collision event is integrated analytically
or numerically, leading to new positions and velocities of the
particles participating in the collision. Hence, the full dy-
namical process is reduced to a cascade of binary collisions.
For a full description of the algorithm, which follows stan-
dard implementations, we refer to the literature.23 Neverthe-
less, for the convenience of the reader, we provide some
details.

s1d The code allows for arbitrary positions of the bulk
atoms. Here, the positions of the atoms making up the undis-
turbed solid were displaced from ideal lattice sites of a Cu
single crystals170 000 atoms of an fcc structure with lattice
constant 3.61 Å, corresponding to a solid of 10.6 nm
310.6 nm and a bulk depth of 18 nmd by uncorrelated,
Gaussian distributed displacementssstandard deviation
0.16 Åd to account for thermal fluctuations.

s2d Our program is suitable for studying defect accumu-
lation during multiple impact, but this feature is not used in
the present work. Hence, the change of the target structure
during ion irradiation is neglected.

s3d All model parameters of the algorithm have been ad-
justed to Cu projectiles of a few keV, hitting a Cu single
crystal.36

s4d Each cascade is started by shooting one ion onto the
crystal. Hence, initially each collision cascade consists of
only the ion.

s5d For each ion of an ensemble, an additional homoge-
neous lateral random displacement was added, which was
taken to be uniformly distributed within a square of edge
length 1 lattice constant. Thus, within every ensemble the ion
hits upon macroscopically identical but microscopically dif-
fering configurations of the solid.

s6d Prior to the collisions, all target atoms are assumed to
be at rest.

s7d Each projectile travels with constant velocity, until an
interaction occurs. A projectile/target interaction was as-
sumed to take place if the impact parameter was less than
pmax=2.6 Å.

s8d The interaction was modeled using a screened Cou-
lomb potential, where the screening function we used was
given by Moliere.37

s9d To model electronic stopping, we applied inelastic
scattering following Refs. 23 and 38.

s10d Due to this choice of the potential/electronic stop-
ping, the collisions had to be integrated numerically, and the
results were stored as a function of the energy and of the
impact parameter.

s11d After the collision, target atoms exceeding the bind-
ing energyEb=3.5 eV are added to the collision cascade,
carrying an energy after the collision, that is reduced byEb.
For simplicity, we used the same value as for the surface
binding energy, i.e.,Es=3.5 eV.

s12d Cascade particles having an energy belowEc
=2.0 eV are removed from the cascade, because they cannot
contribute to further dislocating collisions. Also particles
moving above the surface, i.e., sputtered atoms, are removed
from the cascade.

Although this method has its limitations,25 it has become
a standard technique and is used to describe ion implantation
and sputtering.

We have performed BCA simulations of single-ion impact
on a flat Cu surface with velocityv0. Most of the time we
consider normal incidencesi.e.,v0=−uv0uezd, but we also per-
formed a few off-normal simulations to check for universal
features, see below. A sample cascade, originating from an
impact of a 5 keV Cu ion on a Cu lattice with an angle of
incidence of 60°, is shown in Fig. 1. All the statistical infor-
mation presented below was obtained from ensembles of
3000–6000 ion impacts per ensemble, which we generated
for a single initial condition of the ion. We, moreover, con-
sidered two orientations of the crystal,s1,0,0d and

s58,72,39̄d. The latter was used to assess the effects of crys-
tal anisotropy and can be also considered as an alternative
way to study changes with the angle of incidence. Most re-
sults which are of interest for comparison with the standard
morphological theory and the ulterior analytic treatment are
independent of the crystal orientation, as far as we can say.
E.g., we found very good agreement between the angular
averages ofn2d, e2d obtained froms1,0,0d and the corre-
sponding quantities obtained from the oblique orientation.
Hence, we believe that our results and conclusions for the
surface morphology really represent generic features.

Our choices allowed for easy calibration and comparison
of our implementation against results in the literature. It
should be emphasized, however, that the main focus of the
present work is on generic results, which are of relevance for
pattern formation of ion-sputtered surfaces of metals.

IV. SIMULATION RESULTS

In this section we will present simulation results for the
quantities introduced in Sec. II. As all quantities are evalu-

FIG. 1. Sample cascade originating from an impact of a 5 keV
Cu ion on a Cu crystal. The angle of incidence is 60°. The cube
shown acts just as scale and has size 2.65 nm3, while the full lattice
simulated has sizes10.6 nmd2318 nm.
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ated at the surfacesz=0d, we will abbreviate the notation and
drop thez coordinate from the list of variables wheneverz
=0. So, for example,n2dsr ,z=0d=n2dsrd.

Figure 2 shows the surface distribution of all the ejected
particles within an ensemble of 6000 cascades, each emerg-
ing from one incident 5 keV Cu ionsnormal incidenced for
the crystal in thes1,0,0d orientation. Clearly, a “hole” around
the location of impact is visible. This is in contrast to what
can be expected when applying Eq.s1d. A similar effect in
the ejection pattern, but at zero temperature, has already been
seen for normal sputtering of 1 keV Ar+ on Cu in the work
by Yamamura and Takeuchi.35 This hole can be explained by
the facts that direct backscattering of the surface atoms is not
possible, and that most collision cascades are directed away
from the point of penetration, hence making it unlikely that
surface atoms are ejected there. This is the main qualitative
result of our simulations. Moreover, we also find this hole for
off-normal incidence, as show in Fig. 3. Quantitatively, such
origin for the hole can be assessed by studying correlations
between the positionr of sputtered particles and the projec-
tion of their velocities onto the surface,vsurf=v−sv ·ezdez.
Figure 4 shows the distribution of the anglek betweenr and
vsurf, wherer is the position of a cascade particle arriving at
the surface with velocityv. The figure shows that, indeed, for
typical collision cascades most of the ejected particles move
away from the point of first ion impact.

The scattering of points in Fig. 2 is almost rotationally
invariant; a slight square symmetric structure is visible, re-
flecting the lattice structure. Stronger anisotropies can be
found at zero temperature35 or when studying the movement
of the particles inside collision cascades directly.28–30 Here,
we are interested mainly in the lateral ejection pattern of the
sputtering. To check whether the result of finding a hole is an

artifact of the crystal orientation, we studied also a

s58,32,39̄d surface, see Fig. 5. Although the plot exhibits
slightly less structures, again only a few particles are ejected
near the point of penetration. It seems that the hole around
this point is slightly smaller, as compared with Fig. 2. This is
probably due to the lower symmetry of the crystal with re-

FIG. 2. Spatial distribution of ejected Cu atoms emerging from
6000 independent trials of hitting thesx,yd crystal surfaceforiented
in s1,0,0d directiong with a single 5 keV Cu ion at normal incidence.
Distances are measured in units ofa=3.61 Å.

FIG. 3. Spatial distribution of ejected Cu atoms emerging from
6000 independent trials of hitting thesx,yd crystal surfaceforiented
in s1,0,0d directiong with a single 5 keV Cu ion at 30° off-normal
incidence. The arrow indicates the direction of the projection of the
ion beam onto the surface. Distances are measured in units ofa
=3.61 Å.

FIG. 4. Distribution of ejected particles with different directions
of velocity. Here,k denotes the angle between the projection of
particle velocity onto the surface and the vector between point of
ion impact and point of particle ejection.
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spect to the ion beam, which makes it more likely that col-
lision cascades come back to the origin, i.e., the effect of
focusing29 is smaller. Hence, we decided to concentrate on

the oblique s58,32,39̄d orientation, because we want to
study generic results irrespective of specific crystal orienta-
tions. In any case, for both surface orientations and small
values ofD, the angular average of the density introduced in
Eq. s5d and defined by

n2dsrd =
1

2prD
E

0

2p

dfE
r

r+D

r8dr8n2dsr8,fd, s8d

wherer= uru, turns out to be nearly undistinguishable. Figure
6 shows the correspondingsangle-averagedd probability
density per surface area fsee Eq. s7dg, psrd
=1/s2prDde0

2pdfer
r+Dr8dr8psr8 ,fd, of finding an ejected

particle at a distancer from the point of incidence of the Cu
ion. This figure shows that the assumption on the ejection
probability being distributed following a Gaussian distribu-
tion, hence leading to a maximum atr=0, is not justified in
the case of crystals. Hence, the question arises, whether this
is in contrast to amorphous materials. Some studies28,39,40

have been previously performed using Monte Carlo code
such as TRIM to study sputtering in amorphous materials.
Quantities like flux densities of particles/momentum, aniso-
tropy parameters and densities of deposed energy/momentum
were studied as a function ofdepth, and good agreement
with the Sigmund theory was found. Nevertheless, to our
knowledge there exists only one recent work,41 in which,
using the simulation packet SRIM, the ejection probability
has been systematically studiedas a function of the lateral
distance from the point of penetration, and indeed a
Gaussian-like distribution was observed for the same ion/
bulk parameters as applied here.

Figure 7 displays the corresponding angular average of
the surface densitye2dsrd of the energy of sputtered particles,
defined from Eq.s6d analogously ton2dsrd in Eq. s8d. In this
figure, we also show two Marquardt–Levenberg fits(for
functions of the formfs=sar2+brdexpf−crsg with s=1 and
s=2) to the data. One can see that the decay of the energy
density is not in accordance with a Gaussian, even when
including a decay towards the point of penetration,r=0, as
suggested by Eq.s1d. Rather, data can be fitted well to an
exponential decay with a simple polynomial prefactor.

FIG. 5. Spatial distribution of ejected Cu atoms emerging from
6000 independent trials of hitting thesx,yd crystal surfaceforiented

in s58,32,39̄d directiong with a single 5 keV Cu ion at normal
incidence. Distances are measured in units ofa=3.61 Å.

FIG. 6. Probability of ejected
particles vs distancer from point
of ion incidence smeasured in
units ofa=3.61 Åd, as determined
from the data of Fig. 5.
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In the previous figure, we have studied the meanfsee Eqs.
s6d ands7dg; let us now consider other characteristic features
of the probability densitypsr ,ed. Thus, in Fig. 8 we show the
surface-integrated probability densitypsed=ed2r pse ,rd.
The behavior is compatible with a simple power law for for
largee, namely,

psed <
q

sb + eda , e−2, s9d

our best fit corresponding toq=5.26,b=5.03,a=1.87. Fig-
ure 9 displays the conditional probability densitypse urd of

energy at fixedr, for different values ofr. Remarkably, the
conditional density does not depend onr significantly, within
the statistical scatter, which is large for large energies. This
shows that

pse,rd < psrdpsed ,
n2dsrd

e2 s10d

outside a region of very small distances. An immediate im-
plication is that

e2dsrd ~ n2dsrd, s11d

so that the number of ejected particles and the energy depos-
ited at the surface are proportional to each other, as assumed
in the BH theory. However, another important implication is
that the amount of energy transported to the surface is sub-
ject to strong internal noise, as the number of ejected par-
ticles clearly is. This means that the energy flow varies
strongly with time and space. Hence, fluctuations may play
an important role for pattern formation. This may limit the
applicability of deterministic continuum theories based on
the average energy, which do not treat the fluctuations cor-
rectly. This problem will be pursued elsewhere.

V. CONTINUUM APPROXIMATION TO ENERGY
DEPOSITION

Within Sigmund’s approximation,42 the rate at which the
target is being eroded at an arbitrary point on the surface is
proportional to the total amount of energy deposited there
from ion collisions. In his theory for amorphous or polycrys-
talline targets, an accurate description of the sputtering phe-

FIG. 7. Surface density of mean energy of sputtered Cu atoms
vs distancer smeasured in units ofa=3.61 Åd from point of ion
incidence for 5 keV Cu ions on semilog scale. The solid line is the
best fit of the data to an exponential with a polynomial prefactor,
namely, 0.297sr2−0.392rdexps−1.27rd. The dotted line, which cor-
responds to a fit to a Gaussian, is obviously inadequate.

FIG. 8. Probability density of energy, which is
transported to the surface by a single collision
cascade emerging from a 5 keV Cu ion, on a log-
log scale. The solid line corresponds to the func-
tion 5.259s5.035+ed−1.874, which is the best fit to
a simple power lawq/ sb+eda, while the straight
line represents a simplee−2 power law.

FEIX et al. PHYSICAL REVIEW B 71, 125407s2005d

125407-6



nomena can be achieved by assuming that energy is depos-
ited following the Gaussian distributions1d.

Bradley and Harper7 later employed this energy distribu-
tion in order to computethe local erosion velocity at an
arbitrary surface pointO, allowing for gentle surface undu-
lations. To perform the calculation, a new local reference
frame is taken in which theẑ8 axis is taken along the surface
normal atO. The principal curvatures are assumed along the
x̂8 and ŷ8 axes that are defined, respectively, as the direction
orthogonal toẑ8 that is in the plane defined by this axis and
the ion trajectory and the remaining direction in order to
make up a right-handed reference frame. Assuming that the
radii of curvature atO, Rx, andRy are much larger than the
average penetration depthā the surface height can be ap-
proximated toz8sx8 ,y8d=−1

2fsx82/Rxd+sy82/Rydg. In order to
obtain the erosion velocity, we have to add up the total en-
ergy deposited atO from ions entering the whole target,
expressing the ion flux and energy distribution in the latter
reference frame, which is related with the one implicit in Eq.
s1d as

x̂ = x̂8 cossg0d + ẑ8 sinsg0d,

ŷ = ŷ8, ẑ = ẑ8 cossg0d − x̂8 sinsg0d, s12d

with g0 being the incidence angle formed between the ion
trajectories and thelocal surface normal atO. Accounting up
to curvature corrections, the ion flux readsFsx8 ,y8d
=F0fcosg0−sx8 /Rxdsing0g, whereF0 is theconstantnomi-
nal ion flux. Taking all this into account, the erosion velocity
at O reads, finally,

vOsg0,Rx,Ryd = LE
−`

+` E
−`

+`

Fsx8,y8de2dsx8,y8ddx8 dy8,

s13d

whereL is a proportionality constant relating deposited en-
ergy with the number of sputtered atoms, and the integration
limits are taken to infinity thanks to the assumed fast decay
of the energy distribution, taken by BH to be Sigmund’s
Gaussian, namely,e2d=es in Eq. s13d. By expanding this
equation to lowest nontrivial order inā/Rx, ā/Ry!1, Brad-
ley and Harper obtained7

vO = NsLeF0e
−sā2/2a2dFG0sg0d +

Gxsg0d
Rx

+
Gysg0d

Ry
G ,

s14d

whereG0sg0d, Gxsg0d, andGysg0d are functions that depend
not only on the incidence angleg0, but also on features of the
energy distribution such asā, a, andb.

A. Sputtering yield

Formulas14d enables computation of various relevant ob-
servables. Thus, the sputtering yieldYsg0d, defined as the
total number of sputtered atoms per incident ion, is easily
related tovO by geometry asYsg0d=nvOsg0d / sF0 cosg0d,
wheren is the number of atoms per unit volume in the target.
Assuming a flat interface, that is, in theRx, Ry→` limit, one
is left with

FIG. 9. Conditional probability densitypse urd
to find energye for ejected particles keeping the
distancer fixed. Different symbols correspond to
different values 1.8ørø10.0.
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Ysg0d =
nvOsg0,Rx → `,Ry → `d

F0 cosg0
~

G0sg0d
cosg0

. s15d

Note that, for a flat surface, the local angle of incidenceg0
coincides with the angle between the ion beam and the nor-
mal to the uneroded substrate. Working with Sigmund’s dis-
tribution s1d, BH found7 that Ysg0d increases monotonously
as a function ofg0—examples of the behavior ofYsg0d as a
function of g0 using BH’s results are provided by the thick
solid lines in Figs. 10sfor one-dimensional substratesd and
11 sfor two-dimensional substratesd—such that the maximum
efficiency for erosion is achieved at grazing incidence, con-
trary to experimental evidence for amorphous, polycrystal-
line, and crystalline targets.43–45 This feature of the BH
theory originates in a property of Sigmund’s distribution,
whose maximum for deposition,r =s0,0,−ād, is located
right at the surface under grazing incidence conditions. How-
ever, as is well known, there usually exists a value ofg0
,90° for which the yield is maximum, such that the sputter-
ing efficiency decreases for larger angles of incidence due to
ions being reflected at the surface, an effect which is beyond
Sigmund’s approximations.

B. Surface morphology

Additional predictions on the morphology of the eroded
target can be derived from Eq.s14d. Thus,Gxsg0d is negative7

for small local angles of incidence, which implies that the
erosion velocity is larger at troughssRx,0d than at peaks
sRx.0d, inducing a morphological instability. Other surface
relaxation mechanisms exist, such as surface diffusion, that
counteract this instability. Competition between the two op-
posing phenomena induces the emergence of a typical length

scale that provides the wavelength of the periodic ripple
structure which appears. The best way to assess the features
and properties of such a pattern is through the dynamical
equation for the surface height derived by Bradley and
Harper, which we briefly recall for the sake of the reader and
for later reference. Thus, starting from the equation for the
erosion velocity, consider now a laboratory frame of refer-

encesX̂ ,Ŷ ,Ẑd, defined as follows: theẐ axis is chosen to be
normal to the initial flat surface. The incoming beam direc-

tion forms an angleu with Ẑ, and both direction define a

plane where theX̂ axis lies. Finally, theŶ axis is perpen-

dicular to theX̂ and Ẑ directions. We describe byhsX,Y,td
the surface height at timet above pointsX,Yd on the refer-
ence plane of the unbombarded substrate and assume that it
varies slowly enough so that we can work to first order in the
derivatives. In this way, we may approximate:7–9 g0=u
−]h/]X, s1/Rxd=−s]2h/]X2d, s1/Ryd=−s]2h/]Y2d. Note
that, for a flat interface,g0=u. The velocity of erosion of the
surface heighth is provided bysminusd the erosion ratevO,
and we thus get

1

F

]h

]t
> − G0sud +

]G0sud
]u

]h

]X
+ Gx

]2h

]X2 + Gy
]2h

]Y2 , s16d

where in our normalizationF is a proportionality constant
betweenvO and G0, Gx, Gy, which can be found in the Ap-
pendix for the various distributions considered of energy
deposition. Considering a periodic perturbation to the flat
surfacehsX,Y,t=0d=Aeisk1X+k2Yd, and substituting this ex-
pression into Eq.s16d, the surface profile evolves as

hsX,Y,td = − G0t + Aerteisk1X+k2Y−vtd,

FIG. 10. Normalized sputtering yieldYsg0d /Ys0d as a function
of incidence angleg0, for the various one-dimensional energy dis-
tributions. Thick solid line: Bradley–Harper forā=3.8 nm, a
=2.2 nm,b=1.5 nm. Thin solid line: modified Gaussian, Eq.s21d,
for ā=3.8 nm,sz=2.2 nm,sx=1.5 nm. Dashed line: exponential,
Eq. s23d, for ā=3.8 nm, sz=2.2 nm, sx=0.28 nm, c=−0.14 nm.
Dotted line: truncated exponential, Eq.s23d with c=0 nm, andā
=3.8 nm,sz=2.2 nm,sx=0.28 nm.

FIG. 11. Normalized sputtering yieldYsg0d /Ys0d as a function
of incidence angleg0, for the various two-dimensional energy dis-
tributions. Thick solid line: Bradley–Harper forā=3.8 nm, a
=2.2 nm,b=1.5 nm. Thin solid line: modified Gaussian, Eq.s20d,
for ā=3.8 nm,sz=2.2 nm,sxy=1.5 nm. Dashed line: exponential,
Eq. s19d, for c=−0.14 nm,ā=3.8 nm, sz=2.2 nm, sxy=0.28 nm.
Dotted line: truncated exponential, Eq.s19d with c=0 nm, andā
=3.8 nm,sz=2.2 nm,sxy=0.28 nm.
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r = − Gxk1
2 − Gyk2

2, v = − G08k1. s17d

If Gx and/orGy are negative, there will be values for the wave
vectorsk1,k2d of the perturbation that make it grow exponen-
tially. This behavior is the mathematical expression of the
physical instability mentioned above, leading to ripple
formation,7,42 and is due to the curvature dependence of the
erosion velocity that is larger in surface troughs than in sur-
face protrusions. The observed ripple wavelength arises
when additional smoothing mechanism such as surface dif-
fusion exist that compete with the sputter instability, leading
to selection of a specific length scale. Taking these mecha-
nisms into account,7–9 Eq. s16d reads

]h

]t
> FH− G0sud +

]G0sud
]u

]h

]X
+ Gx

]2h

]X2 + Gy
]2h

]Y2J− B¹4h,

s18d

where, in principle,B is a thermally activated coefficient
which depends on the surface self-diffusivityDs, the free
energy per unit areag, and the number of atoms per unit area
moving across the surfaces, asB=2Dsgs / sn2kBTd. In this
case,r =−Gxk1

2−Gyk2
2−Bsk1

2+k2
2d2, and there is only a band of

unstable perturbations. The observed ripple wavelengthl is
provided by the wave vector which has the largestpositive
value of r, and has a valuel~ fB/ sFuGudg1/2, with G being
that coefficient, out ofGx andGy, which, being negative, has
the largest absolute value. Actually, working with Sigmund’s
distribution s1d, BH obtained7 that GxsudøGysud,0 for in-
cidence angles 0øuøuc, whereas one hasGysud,Gxsud for
u.uc, with Gy being negative for all angles up to grazing
incidence. Morphologically, this means that for small angles
of incidence 0øuøuc, ripple crests are oriented perpendicu-
lar to the x̂8 direction sthe projection of the ion beam onto
the substrate planed, whereas they are oriented perpendicular
to theŷ8 direction for incidence angles larger than the critical
one,uc. Many experiments2,20,46have verified the validity of
the BH theory to describe ripple wavelength and orientation.

VI. MODIFIED ENERGY DISTRIBUTION FUNCTIONS

The results of computer simulations within the BCA ap-
proximation, obtained in the previous sections for Cu ion
bombardment of a Cu target, are described by an energy
distribution that differs substantially from that obtained by
Sigmund in the case of polycrystalline or amorphous sub-
strates. Using cylindrical coordinates around the ion trajec-
tory, as in previous sections, we havesrecall Fig. 7 aboved

eesr,zd = Neesr2 + crde−sr/sxyde−fsz + ād2/2sz
2g, s19d

where Ne=fs2pd3/2szs6sxy
4 +2csxy

3 dg−1 is a normalization
constant. Values forc andsxy that best fit simulation results
werec=−0.14 nm,sxy=0.28 nm, see Fig. 7. Note two main
differences between distributions19d and Sigmund’s distri-
bution s1d: decay here is slowerfexponential as compared to
Gaussian, thus the subscripts in Eq.s19dg in the plane per-
pendicular to the ion trajectory, and energy deposition isnull
along the ion trajectory itself. On the other hand, distribution
s19d is unphysical sincec,0 leads tonegativeprobabilities

for small r values. Nevertheless, as we will see, qualitative
morphological resultsdo not vary much if we consider, e.g.,
a “truncated exponential” distributions19d with c=0, which
is, now, physical, and preserves both main features of Eq.
s19d, namely, zero energy deposition along the ion trajectory
and exponential decay. However, as a difference with BH
results,for any value of c, Eq. s19d is not amenable (in the
case of two-dimensional substrates, see below) to analytical
results for the coefficients appearing in the erosion velocity
as a function of experimental parameters. For this reason,
and in order to facilitate analytical results in such cases, we
will also consider the following modified Gaussian (thus the
subscripts) distribution:

egsr,zd = Nger2e−fr2/s2sxy
2 dge−fsz + ād2/2sz

2g,

Ng = f2s2pd3/2sxy
4 szg−1, s20d

which, again, shares with Eq.s19d inducing zero energy
deposition along the ion trajectoryr=0, but is otherwise
Gaussian in all three directions far enough from the ion path.

A. One-dimensional interfaces: Sputtering yields

In order to develop intuition about morphological predic-
tions from Eqs.s19d and s20d, we consider first thesnon-
physicald case of a one-dimensional target, whose surface
height is described by a single variable functionz8sx8d, or
hsXd. These results will be then compared to the analogous
ones by Bradley and Harper, which will allow us to assess
differences due to the new form of the energy distribution—
mostly due to the fact that in our case no energy is deposited
along ion trajectories.

For a one-dimensional target, distributions20d reads

eg
1dsx,zd = Ngex2e−fx2/s2sx

2dge−fsz + ād2/2sz
2g,

Ng
1d = s2pszsx

3d−1. s21d

Writing the local velocity of erosion in terms ofG0
g,1d, Gx

g,1d

analogous of those in Eq.s14d, we obtain

vO = Ng
1dLeF0e

−fā2/s2sz
2dgFG0

g,1d +
Gx

g,1d

Rx
G , s22d

where the full expressions forG0
g,1d andGx

g,1d as functions of
g0, ā, sx, andsz can be found in Appendix A 1.

On the other hand, distributions19d reads, for a one-
dimensional interface,

ee
1dsx,zd = Neesx2 + cuxude−suxu/sxde−fsz + ād2/2sz

2g,

Ne
1d = fÎ2pszs4sx

3 + 2csx
2dg−1. s23d

In this case, the prediction for the local velocity of erosion
has a shape that is similar to Eq.s21d, albeit with more com-
plex coefficients, whose detailed analytical expressions are
again left to Appendix A 2:
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vO = Ne
1dLeF0e

−fā2/s2sz
2dgFG0

e,1d +
Gx

e,1d

Rx
G . s24d

In Fig. 10, we plot the normalizedsto the corresponding
values for normal incidenced sputtering yieldsYsg0d obtained
through formulas15d for the modified Gaussians21d and
exponentials23d distributions. For the sake of reference, the
BH yield is also shownsthick solid lined. Parameters em-
ployed in Fig. 10 are typical for Cu ion bombardment of Cu
for energies in the range of a few keV, as confirmed by
TRIM/SRIM simulations.21 We can see that for both modi-
fied distributions, Eqs.s21d and s23d, the corresponding
yields feature maxima before grazing incidence, as a differ-
ence to the BH curve. This is in agreement with experimental
data,43–45and is due to the fact that maxima of energy depo-
sition are not along the ion trajectory for these distributions
but, rather, at a certain finite distance from it, which makes
grazing incidencenot the most efficient one for sputtering.
From the figure, we can also conclude that changing the
value of parameterc in distribution s23d from the value de-
duced from the BCA simulationssdashed lined to c=0
s“truncated exponential distribution,” dotted lined does not
modify greatly the quantitative behavior. A larger quantita-
tive modificationfbut not qualitative, in the sense that, in all
cases,Ysg0d is maximum for nongrazing incidenceg is ob-
tained when decay is Gaussianfdistribution s21d, thin solid
line in the figureg, rather than exponential.

The fact sseen in Fig. 10d that the yield is negative for
large incidence anglesg0, as computed using the exponential
distribution with c,0, is due to Eq.s23d taking negative
values for small distances to the ion path. As will be seen
below, this is an artifact of the one-dimensional approxima-
tion, as is the fact that the yields computed from the modified
Gaussian distributions21d, and from the exponential distri-
bution s23d with c=0, vanish forg0=90°.

B. Two-dimensional interfaces

Naturally, the physically relevant case is bombardment of
two-dimensional targets. In this case, the analysis is more
complex, to the extreme that no closed analytic expressions
are available analogous of those found previously, for the
exponential distributions19d that best fits our BCA simula-
tion data. Results for this distribution will be provided from
numerical solutions of Eq.s13d using Eq.s19d. On the other
hand, we have seen in the 1d case that distributionss21d and
s23d lead to similar qualitative results for the shape of the
sputtering yield. For the 2d case, expressions13d using the
modified Gaussian distributions20d does lead to closed ana-
lytical expressions for the coefficients in

vO = NgLeF0e
−sā2/2sz

2dFG0
g +

Gx
g

Rx
+

Gy
g

Ry
G , s25d

that can be found in Appendix A 3.

1. Sputtering yield

In Fig. 11 we see again that the sputtering yields for both
modified distributionss19d and s20d have maxima for inci-

dence angles smaller than grazing, in contrast with the BH
result sthick solid lined, that is maximum only forg0=90°.
As in the one-dimensional case, there is only a slight quan-
titative change in the yield curve if we change parameterc in
the exponential distributions19d from the value fitting BCA
data sdashed lined to the truncated exponential valuec=0
sdotted lined. Also as in the 1d case, the quantitative change
is larger if we consider, rather, the modified Gaussian distri-
bution s20d, the maximum of the yield being attained for
smaller incidence angles. Note, incidentally, that maxima of
the sputtering yield for Xe+ bombardment of Cu have been
reported to occur atlarge but nongrazingangles.45 As in the
1d case, yield maxima at nongrazing angles are due to en-
ergy deposition being most efficient at a certain finite dis-
tance from the ion trajectory.

The yields displayed in Fig. 11 are positive and nonzero
for all values ofg0, and amount to large sputtering rates, as
found in experiments.43–45 In the present two-dimensional
case, for grazing incidence the radial component of the en-
ergy distribution vanishes at the point of impact with the
surface, but not at finite distances from it, which implies that
after surface integration the total deposited energy is nonzero
and the yield is positive.

2. Surface morphology

We are now in a position to study the consequences for
the ripple formation process, of the new features
presented—as compared with Sigmund’s formulas1d—by
the energy distributions19d, suggested by our BCA data, or
its analytically more suited counterpart, Eq.s20d. In order to
do this, we follow the approach pioneered by Bradley and
Harper. Once we take the assumption that the erosion veloc-
ity at a surface point is proportional to the total amount of
deposited energy, and by incorporating surface diffusion ef-
fects, the steps sketched in Sec. V B lead us to an equation of
the same form as Eq.s18d, but with coefficientsG0, Gx, and
Gy, that differ for each energy distribution function consid-
ered. As a partial consistency check of our results, note that
for normal incidence, thex↔y symmetry is restored on the
substrate plane so thatGxs0d andGys0d must coincide. While
for the case of Eq.s25d, we obtain analytically Gx

gs0d
=Gy

gs0d=−4pāsxy
6 /sz

2, for distribution s19d the equality has
to be checked numerically, which indeed we have done.

In Figs. 12–14 we present results for the “effective sur-
face tension” coefficientsGx and Gy for the various two-
dimensional distributions that are normalized by their corre-
sponding absolute values for normal incidenceu=0 fnote
that in the interface equation, Eq.s18d, the coefficientsG0,x,y
appear evaluated at valueu of their argumentsg. We see in
Figs. 13 and 14 thatGx is smaller thanGy for incidence
anglesu,uc, and thatGy is always negative, similarly to the
BH case, displayed for the reader’s convenience in Fig. 12.
One of the successes of BH’s theory lies in its description of
the orientation of the ripple structure for different ion inci-
dence anglesu. Here we see that, although distributionss19d
ands20d lead to quite different sputtering yields as compared
to Sigmund’s distribution, the qualitative behavior of coeffi-
cientsGx and Gy is quite similar to that found by BH, and
thus leads to analogous morphological properties as de-
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scribed in Sec. V B. Moreover, since dependencies of the
ripple wavelengthl~ÎB/ sFuGud on parameters such as ion
flux F0, temperature, or average ion energye are due to
those in the constantsF and B, and theseare the same as
those in BHssee Appendixd, Eq.s18d predicts these for Cu to
be squalitativelyd the same as obtained from BH theory.9

Note this isalso the case in the presence of nonthermal sur-
face diffusion in which, similarly to BH,9 the constantB has
no dependence on temperature and is rather proportional to
F. Overall, given that experimental results are in good agree-
ment with BH predictions for metals,3,4,20 we can conclude
that, in order to provide qualitativeanalytical estimates for
morphological properties of ripple formation on metals, the
modified Gaussian distributions20d seems to be a reasonable
choice.

VII. SUMMARY AND OUTLOOK

We have studied numerically the sputtering process of Cu
ions on Cu fcc crystals by means of the binary-collision ap-
proximation. We have analyzed the distribution of sputtered
particles and their energies, and found significant deviations
from Sigmund’s formula, which is traditionally employed to

study the sputtering process in the framework of continuum
theories, as applied to amorphous and polycrystalline sub-
strates. In particular, we find that near the point where the ion
penetrates the target, the sputter probability goes to zero,
while the Bradley–Harper/Sigmund theory predicts maxi-
mum sputtering at that point.

We have fitted heuristic functions to our data. We find that
anexponentialsrather thanGaussianas in Sigmund’s theoryd
decay with a combination of a quadratic and a linear prefac-
tor fits the data well. The main physical effect, namely, the
hole near the point of penetration, can be reproduced also
qualitatively using a Gaussian distribution with a quadratic
prefactor that lends itself to exact results. We have performed
analytical calculations of the local erosion velocity following
the Bradley–Harper approach for one- and two-dimensional
surfaces for both types of modified distributionssfor the two-
dimensional exponential distribution, the equation could be
solved only numericallyd. We find that the sputter yield is
qualitatively different as compared with the BH approach. As
a function of the angle of incidence, the yield exhibits a
maximum at an angle smaller than 90°. This is in good
agreement with experimental findings, in marked contrast
with the analogous BH result using Sigmund’s distribution,
even without implementing explicitly reflection of the ions
for grazing incidence, which is usually regarded as the main
cause for the decay of the yield at grazing incidence. Finally,
we have computed also the ripple orientation-determining
parametersGx and Gy, usually referred to in this context as
effective surface tension parameters. These turn out to be
only slightly modified with respect to the BH theory, and
lead to a qualitatively similar pattern formation process. De-
pendencies of the ripple wavelength on phenomenological
parameters, such as ion flux, ion average energy, and tem-
perature are as in BH theory.9 Since the influence of nonlin-
earities on ripple characteristics is still under debate even
within Sigmund’s theory proper, we have not considered this
type of effects here. At any rate, the same type of nonlinear
terms would appear in the interface Eq.s18d as compared to
the corresponding equation for amorphous or polycrystalline
substrates.8,9

FIG. 14. Normalized values ofGx
e and Gy

e for the distribution
s19d using the same parameter values as in Fig. 11. The inset cor-
responds toc=−0.14, while the main panel corresponds toc=0.

FIG. 12. Normalized values ofGx andGy for the distributions1d
using the same parameter values as in Fig. 11.

FIG. 13. Normalized values ofGx
g and Gy

g for the distribution
s20d using the same parameter values as in Fig. 11.

INFLUENCE OF COLLISION CASCADE STATISTICS… PHYSICAL REVIEW B 71, 125407s2005d

125407-11



Thus, as a general conclusion on pattern formation by
ion-beam sputtering, our results justify the similarities found
in experiments on metals, to the analogous processes in
amorphous or amorphizable materials, and point to potential
quantitative differences that would possibly merit further
studies. Additional features of ripple formation in metals
such as their existence for normal incidence or change of
orientation with temperature3,15,16 are not explained by the
special properties of the collision cascades in these systems
that we have studied here but, rather, by the special proper-
ties of surface diffusion in such anisotropic substrates.

Regarding future work, it would be also interesting to see
whether the hole near the point of penetration can be found
in experiments and/or in more detailed simulationsssuch as,
e.g., by molecular dynamicsd. To our knowledge, no analysis
of single-ion impacts on metals exist so far. Furthermore, it
would be worth incorporating the modified energy distribu-
tion into existing simple Monte Carlo models of surface
sputtering, such as those in Refs. 17 and 47, in order to
improve their description of erosion processes in metallic
substrates, specially at the large distance and long-time re-
gime for which this type of models is particularly suited.
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APPENDIX A: ANALYTIC EXPRESSIONS FOR
COEFFICIENTS IN THE EROSION VELOCITY

In this appendix, we provide the full expressions for the
coefficients appearing in various expressions for the surface
erosion velocity, Eqs.s24d, s22d, and s25d, that have been
computed analytically for those energy distributions for
which such type of results are achievable.

1. One-dimensional modified Gaussian distribution

vO = Fg
1dFG0

g,1d +
Gx

g,1d

Rx
G ,

Fg
1d = Ng

1dLeF0e
−fā2/s2sz

2dg,

G0
g,1d =

ÎpeAg
2/s4BgdsAg

2 + 2Bgd
4Bg

5/2 cos3 g0,

Gx
g,1d =

ÎpeAg
2/s4Bgd

32Bg
11/2 f2Ag

3BgsAgbg − 10cgd − Ag
5cg

− 4AgBg
2sA2ag − 6Agbg + 15cgd − 24Bg

3sAgag − bgdg,

Ag =
ā

sz
2 sing0, Bg =

1

2sz
2 sin2 g0 +

1

2sx
2 cos2 g0,

ag = − 2 sing0 cos2 g0, bg = −
ā

2sz
2 cos4 g0,

cg = S 1

2sx
2 −

1

2sz
2Dcos4 g0 sing0.

2. One-dimensional exponential distribution

vO = Fe
1dFG0

e,1d +
Gx

e,1d

Rx
G ,

Fe
1d = Ne

1dLeF0e
−fā2/s2sz

2dg,

G0
e,1d =

ae

Be
+

1

8Be
5/2 o

i=1,2
H− 2ÎBeAe,ibe + fAe,i

2 be − 2aeAe,iBe

+ 2beBegÎpesAe,i
2 d/4Be erfcS Ae,i

2ÎBe
DJ ,

Gx
e,1d =

1

64Be
11/2 o

i=1,2
H2ÎBe„s− 1diAe,i

4 fe − 2Ae,i
3 Beee,i + s− 1di

316Be
3de,i − 4Be

2hAe,if5ee,i + s− 1di2Becegj + s− 1di

318Ae,i
2 Befe + s− 1di4Ae,iBe

2de,i… + h− s− 1diAe,i
5 fe

+ 2Ae,i
3 BefAe,iee,i − s− 1di10feg − 4Ae,iBe

2fs− idiAe,i
2 de,i

− 6Ae,iee,i + s− 1di15feg + 8Be
3fs− 1diAe,i

2 ce − s− 1di

33Ae,ide,i + 3ee,igjÎpeAe,i
2 /s4Bed erfcS Ae,i

2ÎBe
DJ ,

Ae,1 =
cosg0

sx
−

ā sing0

sz
2 , Ae,2 =

cosg0

sx
+

ā sing0

sz
2 ,

Be =
sin2 g0

2ss
2 , ae = c cos2 g0, be = cos3 g0,

ce = − 3
2c cosg0 sing0,

de,1 = S c

2sx
− 2Dcos2 g0 sing0 +

cā

2sz
2 cos3 g0,

de,2 = S c

2sx
− 2Dcos2 g0 sing0 −

cā

2sz
2 cos3 g0,

ee,1 = S c

2sz
2 −

1

2sx
Dcos3 g0 sing0 −

ā

2sz
2 cos4 g0,

ee,2 = − S c

2sz
2 +

1

2sx
Dcos3 g0 sing0 −

ā

2sz
2 cos4 g0,
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fe = 2 cos5 g0 sing0.

3. Two-dimensional modified Gaussian distribution

vO = FgFG0
g +

Gx
g

Rx
+

Gy
g

Ry
G ,

Fg = NgLeF0e
−fā2/s2sz

2dg,

G0
g =

peAg
2/s4Bgdsb0Ag

2 + 4a0Bg
2 + 2b0Bgd

2Î2Bg
5/2

,

Gx
g =

peAg
2s4Bgd

16Î2Bg
11/2

h2Bgf4Bg
2bxsAg

2 + 2Bgd − 8AgBg
3ax

− 2AgBgcxsAg
2 + 6Bgd + dxsAg

4 + 12Ag
2Bg + 12Bg

2dg

− AgexsAg
4 + 20Ag

2Bg + 60Bg
2dj,

Gy
g =

peAg
2s4Bgd

4Î2Bg
7/2

f2BgcysAg
2 + 2Bgd − 4Bg

2aysby − 2Bgd

− AgdysAg
2 + 6Bgdg,

Ag =
ā

sz
2 sing0, Bg =

1

2sz
2 sin2 g0 +

1

2sxy
2 cos2 g0,

a0 = sxy
3 cosg0, b0 = sxy cos3 g0,

ax = − sxy
3 sing0, bx = −

sxy
3

2sz
2ā cos2 g0,

cx = − S3

2
sxy +

sxy
3

2sz
2Dcos2 g0 sing0,

dx = −
sxy

2sz
2ā cos4 g0, ex = S 1

2sxy
−

sxy

2sz
2Dsing0 cos4 g0,

ay = −
3sxy

5

2sz
2 ā cos2 g0,

by = −
3sxy

5

2sz
2 cos2 g0 sing0 +

sxy
3

2
cos2 g0 sing0,

cy = −
sxy

3

2sz
2ā cos4 g0, dy = Ssxy

2
−

sxy
3

2sz
2Dcos4 g0 sing0.
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