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Abstract. Micro-organisms living in a turbulent fluid environment often use
directed motility to locate regions of higher than average nutrient concentrations.
Here, we consider a simple continuum model for the distribution of such
chemotactic particles when the particles and the chemoattractant are both
advected by a turbulent flow. The influence of chemotactic sensitivity on the
spatial distribution of the particles is characterized for different types of advected
chemical fields. Using an effective diffusion approximation, we obtain an
analytical expression for the nutrient exposure resulting from the chemotactic
activity of the particles, generalizing previous results obtained for the case of
phototaxis in flows. We show that the biological advantage of chemotaxis in such
systems is determined by the spatial variability of the averaged chemoattractant
field and the effective diffusivity of the turbulent flow.
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1. Introduction

The motion of micro-organisms and cells in response to chemical signals plays an important
role in a wide range of biological processes. For example, marine bacteria are capable of
locating nutrients by detecting and moving towards higher concentrations following the nutrient
gradients produced by phytoplankton photosynthetic products, decaying algal cells, etc [1, 2].
However, complex oceanic environments, where the wind, convection and gravitational forces
create turbulent flows, affect the bacterial search by altering both the concentration distribution
surrounding the microscale nutrient sources and the motion of chemotactic bacteria. In recent
years, some progress has been made in understanding the bacterial chemotactic behavior in
this marine context. For example, Bowen et al [3] and Luchsinger et al [4] proposed theoretical
models of bacterial clustering in a turbulent environment. In a recent work, Stocker et al [5] used
microfluidic experiments to create a complex environment consistent with that expected in the
ocean and found that bacterial chemotaxis can exploit patchily distributed nutrients and nutrient
plumes. This confirms that microscale motility can have significant effects on net large-scale
biogeochemical fluxes in the ocean.

In order to understand how the organisms effectively respond in different small-scale
turbulent flows and the role of the spatial distribution of the nutrients in the organisms’
exploitation of them, in this paper we consider a mathematical model that describes the
distribution of a population of chemotactic particles that swim with a velocity proportional to the
local gradient of a chemoattractant in a time-dependent chaotic flow. Here, we study the general
case where the chemoattractant distribution is also transported by the moving fluid medium,
extending previous results on phototactic swimming micro-organisms advected by a turbulent
velocity field [6] where a static external field independent of the flow (i.e. an illumination field)
was considered. In order to describe the temporal evolution of the nutrient concentrations and
the distribution of micro-organisms at the population level, we consider a continuum model
that is similar to those used in the study of chemotactic aggregation [7, 8] (for a recent review,
see [9]). In contrast to these works where the chemoattractant is assumed to be produced by the
cells, creating an instability that induces the aggregation, here the evolution of the nutrients has
external sources and is independent of the micro-organisms. A further significant difference with
most continuum models of chemotaxis is that in this work we consider the effect of advection,
which can dramatically alter the features of particle clustering [10].

We characterize the main statistical properties of the spatiotemporal distributions of
the chemotactic particles advected by a velocity field generated using a stochastic model
of a spatially smooth and temporally chaotic unsteady flow, representing microscale flows
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corresponding to length scales below the Kolmogorov scale. Our analytical description, based
on the effective turbulent diffusion approximation, allows us to reproduce the simulations and
quantify the nutrient exposure experienced by the particles, describing how this depends on the
particles’ chemotactic sensitivity and the features of the chemoattractant source.

2. The model

We consider swimming particles that detect local instantaneous gradients of a chemoattractant
(e.g. some nutrients) and move in the direction of increasing concentration with a swimming
velocity proportional to the detected gradient. Although there can be a great variety of detailed
microscopic mechanisms for the chemotactic response, this description can be considered as the
simplest representation consistent with an effective chemotactic flux generated at the population
level [9, 11, 12]. At the same time, both the particles and the chemoattractant are advected
by a time-dependent incompressible flow and may diffuse. We describe the particle density
and chemical concentration at any point r and time t by the continuous scalar fields ρ(r, t)
and c(r, t), respectively, and assume that the chemoattractant is produced by a fixed localized
source and degraded with a characteristic rate b. The simplest continuum model describing the
temporal evolution of the system that includes these mechanisms is given by

∂ρ(r, t)

∂t
+ V(r, t) · ∇ρ(r, t)= Dρ∇

2ρ(r, t)−χ∇ [ρ(r, t)∇c(r, t)] , (1)

∂c(r, t)

∂t
+ V(r, t) · ∇c(r, t)= Dc∇

2c(r, t)+ b [S(r)− c(r, t)] , (2)

where V(r, t) is the carrier flow and Dρ and Dc are constant diffusion coefficients. Typically
the particles’ diffusivity is smaller than the chemical diffusivity in real systems; however, as we
will see below, the value of these coefficients will not significantly affect our principal results
because the main effective mechanism for diffusion is the turbulent flow. The parameter χ is
the chemotactic sensitivity and defines the strength of the particles’ response to the chemical
substance that is produced in the medium, at a rate following a stationary source distribution
S(r). For our simulations we consider a Gaussian distribution, although these results do not
depend on the exact functional form of S(r). Thus, the concentration field c(r, t) depends only
on the properties of the carrier flow and the characteristics of the production and degradation.

When the temporal scale of the degradation and production (b−1) is much faster than
the characteristic timescale associated with the flow, the concentration field is not affected
significantly by advection and can be approximated by the stationary solution of equation (2),
that is, c(r)≈ S(r). In this case, the system is reduced to the phototactic problem studied
previously in [6]. However, when the production-degradation rate b is comparable or smaller
than the inverse flow timescale, advection has a strong influence on the concentration field,
creating a more irregular spatial structure and temporal variability. Thus, by varying the
parameter b we consider different regimes where the chemical field is determined to differing
degrees, by the source distribution or transport processes. The properties of the particle
distribution depend on the interplay between the particle motility induced by the chemotactic
term, and the advection. Assuming no-flux or periodic boundary conditions the total mass of
the biological component is conserved and can be characterized by the integral of the spatial
density, ρ0. After relaxation of transients, the chemical field also reaches a statistically stationary
state with the total concentration, c0, equal to the spatial integral of S(r).
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For the velocity field, we use a two-dimensional isotropic and homogeneous synthetic
turbulence model introduced in [13]. The flow V(r, t) is defined through the stream function,
ψ , as V = ∇ × (0, 0, ψ), where ψ is the solution of the Ornstein–Uhlenbeck process produced
by the stochastic partial differential equation [6, 14]

∂ψ

∂t
= ν∇2ψ +

√
ξ
∂W

∂t
. (3)

Here ν is a damping parameter that determines the temporal correlations of the spatial structures
in the flow, W represents a Wiener process and ξ is the amplitude of the noise that is chosen
for each Fourier mode with wavenumber k according to a prescribed kinetic energy spectrum
for the flow that verifies E(k)= 〈|v̂k|

2
〉 = ξ/2ν, where v̂k is the velocity field amplitude for the

corresponding mode of the streamfunction (for more details, see [14]). To represent small-scale
turbulence below the Kolmogorov scale, we use the Kraichnan spectrum [15]

E(k)∝ k3 exp

(
−

k2

k2
0

)
, (4)

which has a single peak at k0 and an exponential tail, thus producing a spatially smooth
time-dependent velocity field. We set the lengthscale of the highest energy mode to two-
thirds of the total system size defined on the unit square (k0 = 3π/2). The temporal scale
in equations (1) and (2) was also normalized to have a root-mean-square velocity of unity.
We used periodic boundary conditions and a lattice grid (256 × 256 nodes) with spatial and
temporal steps 1x =1y = 4 × 10−3 and 1t = 1 × 10−4, respectively, checking that the results
do not differ significantly for smaller space and time steps. The normalized spatial integral of
the particle density was set to ρ0 = 1, which remains constant during the simulation. For the
source distribution of the chemoattractant we used a Gaussian distribution with unit amplitude
and width σ = 1/6 following S(r)= exp[−r 2/(2σ 2)], and normalized diffusion coefficients
Dρ = Dc = 0.002. Thus, after proper rescaling, the non-dimensional parameters b and χ can
be both varied to study the different regimes for the solutions of equations (1) and (2).

The numerical simulations were performed using a fourth-order Runge–Kutta method
combined with a cubic interpolation semi-Lagrangian scheme [16] to describe the advection. For
the spatial integration of the particle density, we used a novel discretization method proposed
by Grima and Newman [17] for advection–diffusion equations that allows an accurate analysis
of the evolution of the system without the dissipative effects of other schemes.

3. Simulations

In general, in the absence of a source and chemotaxis, the variance of a passive concentration
field dispersed by an ergodic incompressible flow decays and asymptotically approaches a
spatially uniform distribution; however, for equations (1) and (2), the spatial concentrations of c
and ρ may remain highly non-uniform and their characteristic structure depends on the chemical
degradation-production rate and the chemotactic sensitivity. An example of the temporal
evolution of c and ρ for b = 5 and χ = 0.1 is shown in figure 1 (see also the supplementary
movies available from stacks.iop.org/NJP/12/103043/mmedia). As we can see here the chemical
field is dispersed by the turbulent flow in the region around the source. The instantaneous
chemical field changes in an irregular fashion, but on average the concentration of c is larger at
the center of the domain. The distribution of the chemotactic particles also has a higher density
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Figure 1. Concentration field c (first row) and particle density ρ (second
row) for b = 5 and χ = 0.1 at different times: t = 10−3 (first column), t = 0.3
(second column), t = 1 (third column) and t = 10 (fourth column). See also the
supplementary movies available from stacks.iop.org/NJP/12/103043/mmedia.

(a) (b) (c) (d)

Figure 2. Snapshots of the concentration field c in a statistically stationary state
for different values of b: (a) b = 100, (b) b = 10, (c) b = 1 and (d) b = 0.1. The
color scale is the same as that in figure 1 with the maximum value of 1.00.

(on average) near the center, but typically it is more concentrated into thin filamental structures
that also extend into regions with lower concentration of the chemoattractant.

The temporal evolution and spatial structure of the chemical field are independent of ρ and
depend on the degradation-production rate, b [18]. In figure 2, typical snapshots of the concen-
tration field, c, are shown after relaxation of the transients for different values of b. In general,
the turbulent flow produces a chemoattractant distribution different from the source distribution,
S(r). However, when the temporal scale associated with the degradation-production rate of c
(given by b−1) is much smaller than the characteristic timescale of the turbulent flow (that is,
of the order of unity), its shape is only slightly modified by the flow and remains quite similar
to S(r) (see figures 2(a) and (b)). For values of b−1 of the order of or larger than unity, the
distribution of chemoattractant becomes more homogeneous and is spread over a larger area
compared to the source function (see figures 2(c) and (d)).
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Figure 3. Snapshots of the particle density field ρ in a statistically stationary state
for different values of b: b = 10 (first row), b = 1 (second row) and b = 0.1 (third
row), and different values of χ : χ = 2 × 10−3 (first column), χ = 0.02 (second
column), χ = 0.1 (third column) and χ = 0.2 (fourth column). The color scales
are the same as that in figure 1 with the maximum values of 1.62, 2.18, 11.91
and 51.86 for the first, second, third and fourth columns, respectively.

Figure 3 shows the particle density after relaxation of the transients for a set of different
values of the degradation-production rate, b, and chemotactic sensitivity, χ . The steady state
reflects a statistical equilibrium resulting from the competition between the chemotaxis, which
tends to accumulate all particles in regions with the largest concentration of c, and the advection
by the turbulent flow, which tends to homogenize the particle density. The temporal evolution of
ρ depends on the time-dependent concentration field, c, that is dispersed over a larger area as b
is decreased, having a similar effect on the particle density. Furthermore, the particle distribution
concentrates into thin filaments that become more pronounced as χ is increased. Thus, for
large values of χ , the particles tend to accumulate in thin structures separated by sparse regions
following the nutrient concentration. Although one could expect that for the cases with almost
homogeneous chemoattractant distributions (small values of b) the nutrient exposure of the
particles cannot increase with the chemotactic sensitivity (χ ), as we will see below, even for
small values of b, the simultaneous overlap (without spatial or temporal delay) between ρ and
c fields increases as the chemotactic sensitivity χ is increased.

In order to characterize the statistical properties of the ρ and c fields in the steady state,
we obtain the mean distributions, ρ̄(r) and c̄(r), by averaging the values of the concentration
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Figure 4. (a) Averaged radial profile of the stationary chemical concentration
c̄(r) for different values of b (from bottom to top): b = 1, b = 5, b = 10 and
b = 100; (b) Averaged radial profile of the particles concentration ρ̄(r) for
b = 10 and different values of χ (from bottom to top): χ = 2 × 10−3, χ = 0.02,
χ = 0.04 and χ = 0.1. The data were averaged over 50 different realizations.
The corresponding dashed lines represent the analytical predictions.

and density at each point over a number of statistically equivalent realizations of the stochastic
flow velocity field. Since in our case the source function S(r) is radially symmetric and the
flow is isotropic, the averaged system presents an approximate radial symmetry that is slightly
broken by the finite rectangular domain, but in general it is a good approximation for our
simulations. In figure 4(a), we show the radial profile of the averaged chemical concentration in
the steady state for different values of b. As expected, the concentration is more uniform and the
maximum is smaller with decreasing b. The particle density also becomes more homogeneous
with decreasing b (not shown) or with decreasing chemotactic coefficient χ , as shown in
figure 4(b), where the averaged radial profile of the stationary particle density is plotted for
different values of χ and a fixed value of b. We also note that the instantaneous particle density
is more irregular for large values of χ with strong fluctuations and large standard deviations for
the statistical data.

The increased benefit of chemotactic motility for the micro-organisms can be characterized
by the nutrient exposure of the population by evaluating

8=

∫
ρ(r)c(r) dr, (5)

which is a measure of the overlap between the density field and the high-concentration regions.
This magnitude is shown in figure 5(a) for different values of b and χ . Here we see that
the nutrient exposure increases with the chemotactic sensitivity of the particles, but the rate
of increase strongly depends on the properties of the concentration field, controlled by the
degradation-production rate b. In the limit of passive non-motile particles (χ → 0), their density
distribution is not affected by the concentration field and is spatially uniform (being ρ0 in all
of the considered unit spatial domain). In this case, the nutrient exposure is proportional to the
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Figure 5. (a) Nutrient exposure 8 as a function of χ for different values of
b (from bottom to top): b = 1, 5, 10 and 100, and in the absence of chemical
advection Vc = 0 (phototaxis case). The bars indicate the root-mean-square
deviation of the fluctuating instantaneous nutrient exposure from its mean value.
The corresponding dashed lines represent the analytical predictions. (b) Time
evolution of the finite-time effective diffusivity De(t) obtained from numerical
simulations of the dispersion of a passive scalar advected by the synthetic
turbulent flow.

average chemoattractant concentration following

80 = ρ0

∫
c(r) dr. (6)

Since in the stationary state the total chemoattractant concentration c0 =
∫

c(r) dr =
∫

S(r) dr
is independent of b, for the considered case with ρ0 = 1 we have 80 = c0 = 0.17. On the other
hand, for large χ all the particles are clustered into a small blob that tries to follow the maximum
concentration. In this case the nutrient exposure reaches a plateau value,8s , that is proportional
(with a constant of proportionality ρ0) to the maximum value of the averaged c field located at
r = 0, which reads 8s = ρ0c̄(r = 0). Thus, since on decreasing the value of b the maximum of
c̄ is also diminished (see figure 4(a)), the saturation value of the nutrient exposure is reduced for
small values of b. In other words, the maximum benefit of chemotaxis becomes smaller when
the chemical field is more strongly influenced by advection.

4. Mean field modeling

As seen above, although the instantaneous distributions change in an irregular fashion following
the turbulent flow, averaging over time or different realizations of the random flow we can
characterize the stationary distributions in the physical space. To obtain a transport equation for
the averaged fields ρ and c, the effect of dispersion by the flow V can be described by using a
turbulent diffusion approximation [6]. From equations (1) and (2) we have

∂ρ̄(r, t)

∂t
= De

ρ ∇
2ρ̄(r, t)−χ∇[ρ(r, t)∇c(r, t)], (7)
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∂ c̄(r, t)

∂t
= De

c∇
2c̄(r, t)+ b [S(r)− c̄(r, t)], (8)

where the diffusion and advection terms are replaced by an effective diffusion for the particle
and chemical densities De

ρ and De
c , respectively, and the overlined magnitudes represent their

averaged values over different realizations of the stochastic flow. Certainly, for homogeneous
flows and non-reactive scalar fields, one expects that such an effective diffusion will only
depend on the statistical properties of the turbulent flow. Thus, for example, in [19] the effective
diffusion is derived for a passive scalar advected by a stochastic velocity field. In the case of
reactive fields, the effective diffusion coefficient also depends on the reaction time as shown by
Plumb [20] and used, for example, by Pasquero to study the population dynamics in a plankton
ecosystem model under turbulent transport [21]. To compute the effective diffusion and some
of the statistical properties of the synthetic flow, we follow [13, 19] where the spatial spread
of a passive scalar field is evaluated using an approximate δ-function as the initial condition.
Averaging over different realizations at different times we can relate the spatial variance Var(δ)
with the finite-time effective diffusivity De. For a two-dimensional system, this relation reads
De(t)= Var(δ)/(4t), where De is the sum of a purely molecular diffusion and the contribution
due to the turbulent flow. For the turbulent flow considered here, the effective diffusion obtained
as described above is shown in figure 5(b). For short times the ballistic regime dominates and
De

∝ t , however for times larger than the characteristic time of the turbulent flow, Tf, defined as
the time required to reach the Brownian regime, a constant effective diffusivity, De

0, is attained.
In the case of the flow used in the numerical simulations, we obtain De

0 ≈ 0.034 and Tf ≈ 0.5.
For passive scalars or reactive systems in which the reaction timescales are larger than the
characteristic flow time, the effective dispersion due to turbulent mixing is well described by De

0.
In the case when the tracer reacts before the Brownian regime is reached, the effective spreading
rate is smaller than De

0, and using the theoretical results of Plumb the effective diffusivity can
be estimated by the value of the finite time diffusion coefficient De(b−1) corresponding to the
reaction time, as was done in [21]. We use this approximation to find the stationary solution of
equation (8) for different values of b.

Since the profiles of the source function and the averaged chemical field are close to zero in
the boundaries, we can extend the domain to infinity and use the Hankel transformation to obtain
the stationary state of c̄ from equation (8) when a radially symmetric source is considered. The
Hankel transform is just the two-dimensional Fourier transform for radially symmetric problems
whose kernel is the Bessel function. The zeroth-order Hankel transform and its inverse transform
of a radial function f are defined, respectively, by [22]

H0 { f (r)} (s)≡

∫
∞

0
r f (r)J0(sr) dr, H−1

0 { f (s)} (r)≡

∫
∞

0
s f (s)J0(sr) ds, (9)

where J0 is the zero-order first kind Bessel function. Equating to zero and applying the Hankel
transform to the rhs of equation (8), we obtain

H0 {c̄(r)} (s)=
H0 {S(r)} (s)

1 + De
cs2/b

. (10)

Since the Hankel transform of the Gaussian source function is H0 {S(r)} (s)=

σ 2 exp(−s2σ 2/2), it is straightforward to obtain c̄(r) applying the inverse Hankel trans-
form to equation (10). This reads

c̄(r)= σ 2

∫
∞

0

s J0(sr)e−s2σ 2/2

1 + De
cs2/b

ds. (11)
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Figure 6. (a) Averaged product of the particle density and the chemical
concentration ρ∇rc(r) (solid lines) and its mean field approximation ρ̄(r)∇rc̄(r)
(dashed lines) and (b) averaged product of the particle density and the radial
component of the gradient of the chemical concentration ρ∇rc(r) (solid lines)
and its mean-field approximation ρ̄(r)∇rc̄(r) (dashed lines) for b = 10 and
different values of χ (from bottom to top): χ = 0.02, 0.1 and 0.2.

In figure 4(a), this expression is compared with the numerical results for different values of b. As
noted above, the effective diffusion in equation (11) depends on the temporal scale (b−1). Thus,
we can extract the values of De

c from figure 5(b). For b = 100, 10, 5 and 1 (corresponding to
t = 0.01, 0.1, 0.2 and 1), De

c ≈ 5 × 10−3, 0.02, 0.026 and 0.034, respectively. It is worth noting
some properties resulting from equation (11): (i) the maximum of the integral is always located
at r = 0 since the maximum of J0(r) is located at r = 0; (ii) the numerator in the integral in
equation (11) is independent of the reaction time, but the denominator increases with decreasing
b; thus c̄(0) decreases as b decreases; (iii) since the total amount of c does not depend on the
value of b, the shape of c̄(r) must be spread over a wider region with decreasing b. This last
point also means that the approximate analytical solutions are less accurate for small values of
b since c̄(r) does not tend to 0 at the boundaries (see figure 4(a) for b = 1).

The chemotactic term tends to collect particles to the regions of high chemical
concentrations but it is counteracted by the turbulent advection (represented by the first term
on the rhs of equation (7)), which tends to smooth out the inhomogeneities in the particle
density. Thus, even for relatively large values of χ , the consequence of turbulent advection
is that the fluctuations in the density and the chemical fields are not correlated. This has been
confirmed numerically by showing that the radial profiles of the magnitudes ρc(r) and ρ̄(r)c̄(r)
averaged over statistically independent realizations match (figure 6(a)). Since the chemotaxis is
driven by gradients of chemoattractant concentration, it is also interesting to compare the radial
component of ρ∇rc(r) and its mean field approximation ρ̄(r)∇rc̄(r). As presented in figure 6(b),
the two profiles are very similar, showing that their simultaneous correlations are also weak and
decrease with decreasing χ . This property can be used in equation (7) to obtain the stationary
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average density of the chemotactic particles from

De
ρ∇

2ρ̄(r)−χ∇ [ρ̄(r)∇ c̄(r)] = 0. (12)

The solution of equation (12) is the Boltzmann distribution

ρ̄(r)=
ρ0

Z
eχ c̄(r)/De

ρ , with Z =

∫
eχ c̄(r)/De

ρ dr, (13)

where Z is a normalization factor that is analogous to a partition function. Similarly to the
equation for c̄(r), the effective diffusion in equation (7) may depend on the characteristic
timescale corresponding to the chemotactic term. In this case, since we are using an extended
nutrient source (with small gradients of the order of unity) and relatively small values of χ ,
this temporal scale is larger than the characteristic timescale of the flow and we have De

ρ = De
0.

The analytical solution for the averaged particle distribution, from equation (13), is shown in
figure 4(b) for different values of the chemotactic coefficient χ . This approximation works better
for small values of χ when the particle and chemical fields are less correlated and the ρ field is
more uniform.

As shown in figure 6(a), we can approximate ρc(r) by ρ̄(r)c̄(r) and use equations (11)
and (13) to obtain the following expression for the nutrient exposure:

8=

∫
ρ̄(r)c̄(r) dr = ρ0 De

ρ

∂ log Z

∂χ
, (14)

where we used the ‘partition function’ Z defined in (13). Using only the analytical expression
for the averaged chemoattractant field given by equation (11) and the value of the effective
diffusivities, we can obtain the nutrient exposure as plotted in figure 5(a) by dashed lines for
different values of b.

For small values of χ , there is a linear relationship between 8 and the chemotactic
sensitivity. This is easy to see if we consider Z as the moment-generating function of the
random variable c̄(r) with a uniform probability density function. In this case, its logarithm
is the cumulant-generating function and satisfies log Z =

∑
∞

n=1

(
χ/De

ρ

)n
κn/n!, where κn are

the cumulants of c̄(r). Using this relation we can write equation (14) as

8=

∞∑
n=1

κn

(n − 1)!

(
χ

De
ρ

)n−1

= κ1 + κ2
χ

De
ρ

+O

(
χ

De
ρ

)2

. (15)

Since the average chemical concentration is constant (independently of b), we have that κ1 =

c0 =
∫

S(r) dr = 0.17. The second cumulant is the spatial variance of the averaged concentration
field, κ2 = Var(c̄). Thus, in this linear regime (i.e. weak chemotaxis), the biological advantage
of directed motility (given by the increase in nutrient exposure) is proportional to the spatial
variability of the averaged chemical field and inversely proportional to the turbulent diffusivity
following the equation

8− c0 ' Var(c̄)
χ

De
ρ

. (16)

In order to estimate analytically the spatial variance of the averaged concentration field, we can
use Parseval’s theorem for the Hankel transform and equation (10) to obtain

Var(c̄)=

∫
[c̄(r)]2 dr − c2

0 = 2π
∫

∞

0
s (H0 {c̄})2 ds − c2

0

= πσ 2

[(
σ 2b

De
c

)
−

(
σ 2b

De
c

)2

eσ
2b/De

c Ei

(
σ 2b

De
c

)]
− c2

0, (17)
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Figure 7. Nutrient exposure 8 as a function of χ for different values of b,
where the corresponding dashed lines represent the linear approximations given
by equation (19).

where Ei(x) is the exponential–integral function for the real argument x . For large arguments
(large values of σ 2b/De

c), we can expand the exponential–integral function as Ei(x)=

e−x/x
∑N−1

n=0 n!/(−x)n +O
(
N !x N

)
and the spatial variance is reduced to

Var(c̄)= πσ 2

[
1 − 2

De
c

σ 2b
+O

(
De

c

σ 2b

)2
]

− c2
0. (18)

With this, we can approximate the nutrient exposure by the following linear function,

8' c0 +

[
πσ 2

(
1 − 2

De
c

σ 2b

)
− c2

0

]
χ

De
ρ

, (19)

which is strictly only valid for small values of χ in the limit of large b and σ . In figure 7,
we represent this approximation for small values of χ and three different values of b. As we
can see here, equation (19) represents accurately the exact solution, equation (14), for large
values of b and shows explicitly that the nutrient exposure decreases with decreasing b in
agreement with the numerical simulations. For small values of b, this approximation is less
accurate and eventually, as occurs for b = 1, may become incorrect, resulting in negative slopes
for equation (19).

5. Summary and discussion

We have studied the spatial distribution of a population of chemotactic micro-organisms when
both the chemoattractant field and the micro-organisms are embedded in a moving microscale
turbulent flow. The temporal evolution of the density and concentration fields has been described
using a continuum model of a pair of coupled partial differential equations based on a variant of
the standard Keller–Segel model. Numerical simulations and analytical results have allowed us
to describe some important features of the considered system. Specifically, using a mean-field
approach based on the properties of the averaged concentration field and an effective diffusion
approximation for the dispersion by the flow we obtained an accurate description for the average
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distribution of the chemoattractant and the particles, and the nutrient exposure of the population.
The obtained solution generalizes previous results for the case of a static external field and shows
that the particle density distribution is crucially determined by the averaged chemoattractant
field.

As a consequence of the irregular character of the fluctuations due to the turbulent flow
that inhibits the buildup of strong simultaneous correlations between both fields, on average
the particles effectively follow the mean chemical field and cannot exploit the instantaneous
concentration fluctuations. Thus, even for relatively large values of the chemotactic sensitivity,
the turbulent flow decorrelates the particle and the concentration fields and the filamental
structure of the underlying chemical field may be abstracted into a coarse-grained effective
gradient. The obtained results show that the nutrient exposure of the population increases
linearly with the chemotactic sensitivity for weakly chemotactic organisms and saturates for
large chemotactic responses. The rate of increase and the saturation value both depend on the
properties of the advected chemical field that is determined by the degradation-production rate,
i.e. to what extent the chemical field is influenced by the carrier flow. Thus, for example, the
benefit of chemotaxis becomes smaller when the chemical field is more strongly influenced by
advection. Importantly, the increase in nutrient exposure also depends on the spatial variability
of the averaged chemical field, i.e. a more spatially heterogeneous source field induces a larger
nutrient exposure for organisms that effectively detect and respond to the resource.

Employing this continuous description, further work might take into account quorum
sensing as a possible mechanism for a more effective search strategy [23, 24] and possible
three-dimensional effects, for example in the case of sinking marine snow particles. In addition,
the presented model may also be applied to describe phoretic particles, which move due to
the gradient of a solute. This phenomenon called diffusiophoresis is obtained by slaving the
dynamics of large particles to a dilute salt [25]. It might be interesting to apply some of the
obtained results to the study of the effect of small-scale turbulent flows on the migration of
these particles towards regions of higher salt concentration.
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